78=(1/2)(n^2-n)

Simple and best practice solution for 78=(1/2)(n^2-n) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 78=(1/2)(n^2-n) equation:



78=(1/2)(n^2-n)
We move all terms to the left:
78-((1/2)(n^2-n))=0
Domain of the equation: 2)(n^2-n))!=0
n∈R
We add all the numbers together, and all the variables
-((+1/2)(n^2-n))+78=0
We multiply all the terms by the denominator
-((+1+78*2)(n^2-n))=0
We calculate terms in parentheses: -((+1+78*2)(n^2-n)), so:
(+1+78*2)(n^2-n)
We add all the numbers together, and all the variables
157(n^2-n)
We multiply parentheses
157n^2-157n
Back to the equation:
-(157n^2-157n)
We get rid of parentheses
-157n^2+157n=0
a = -157; b = 157; c = 0;
Δ = b2-4ac
Δ = 1572-4·(-157)·0
Δ = 24649
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{24649}=157$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(157)-157}{2*-157}=\frac{-314}{-314} =1 $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(157)+157}{2*-157}=\frac{0}{-314} =0 $

See similar equations:

| 54x+63=49x-9 | | -18=7m-9-5m | | 30=x(0.8) | | X=3,y=-2 | | 8n-21-3n=4 | | 56x+63=49x-9 | | X/x(x-1)=2 | | 12•b=480 | | 300=100e | | -(2x+7)-3=-6(-x+7) | | 9p+4=3p+4 | | 9p+4=3p+4p | | 5y-45➗35=4/7 | | -2x+-7-3=6x+-42 | | 5y-45/35=-4/7 | | 20-3x=40-11x | | X+2y=4(1) | | 7(-5-7x)=-427 | | x+4=x–2 | | 6w-7=4w+5 | | 2x-3x-21=1 | | (2x+4)^2=-15 | | 2x2+15x+7=0 | | -5(5x+3)=-265 | | -8+8x+48=-16 | | x/850=17/11 | | y+22.461=17.03 | | 30((1)/(6)x+(1)/(15)(x+8))=30 | | 30((1)/(6)x+(1)/(15)(x+8))=30*1 | | x/17=5/850 | | 8x+5x+2x=50 | | x/11=17/850 |

Equations solver categories